China Hot selling High Quality Customized Plastic Spur Gear, Nylon Gear, POM Gear straight bevel gear

Product Description

Product Description

Quick Details:

Material: POM( Polyoxymethylene), Nylon
Color: Natural, White, Black
Teeth: Straight-toothed
Size: Standard Size/Customers’ Requirements
Applicable Industries: Motors, Machines, Tools and Mechanical parts, Health care and Fitness, Home appliance and recreation, Automotive parts, etc.

 

We CAN supply standard fasteners and special fasteners including non-standard lengths and diameters, and products made to customer drawings and specifications – usually with relatively short lead times and favorable prices available, more information please see our “Company Profile” and “Custom Service” or send an inquiry to us, we will do our best to support you.

 

Company Profile

ZheJiang CHINAMFG Precision Parts Co., Ltd has been established since June 2015. With a professional background and more than 15 years of the avage erworking year, we are a group of young people committed to promoting the development of precision manufacturing in China.
Currently, our business scope covers turning(automatic lathe and CNC lathe)cold headinginjection moldingstamping, and casting. Of course, turning processing is the most of our core part of the business. We are concentrating on non-standard and customized precision machining products and parts.

For the early stage of product design, we are able to provide process analysis and technical support. When the project is launched, we can supply the samples. Full professional service and support are guaranteed until mass production.
Our core values: Professional, Reliable, Cost-efficient, and Sustainable.

Factory Images

Testing Equipment

Packaging Specification:
1. We have several sizes of packing dimensions, can be 10kg or 15kg per carton;
2. Normal packing:1000pcs/500pcs/250pcs per polybag, then polybags into cartons;
3. For large orders, we can provide special sizes of cartons and delivery goods on pallets or in plywood cases;
4. For customized specifications, we can provide special packing material according to your request.
 

Custom Service

Available Material 1. Stainless Steel: AISI303, AISI304, AISI316, AISI416, AISI420,etc.
2. Free Cutting Steel:12L14,1215,etc.
3. Brass:C37700 ( HPb59), C38500( HPb58),C27200(CuZn37), C28000(CuZn40/H62),C3604,etc.
4. Bronze: C51000, C52100, C54400,CuSn8,etc.
5. Steel:C45(K1045), C20,etc
6. Aluminum: Al6061, Al6063, etc.
7. Carbon Steel:AISI1006,AISI1571,AISI1571,etc.
8. Alloy Steel: SCM435,10B21,etc.
9. PA6,PA66,PP,PC,POM,PEEK(FOR Injection)
10. According to customer’s requirement
Finish Electroplating: Zinc Plating, Ni Plating, Electroless Nickel Plating, Zn-Ni Alloy Plating, Tin Plating, Copper-plating, Hot-dip
Galvanizing, Black Oxide Coating, Black Anodizing, etc
Powdering, Rust Preventive Oil, Silver plating, etc
Testing Equipment CMM, Projector, Pull Tester, Automatic Optic Inspector, Projecting Apparatus
Salt Spray Test, Durometer, Coating Analyzer, Tensile Machine
Management System ISO9001/SGS/Rohs/IATF16949
Certification SGS,RoHS,Material Certification,PPAP
Production Capability Auto Lathe Turning: ODΦ1.0-20mm, Tolerance.±0.01mm
CNC Lathe Turning:ODΦ1.0-460mm,Tolerance.±0.005mm
CNC Milling:800x600mm(LxW),Tolerance.±0.05mm
Grinding: Tolerance.±0.002mm
Screw Cold Heading and Rolling: Metric 0.8-M16
Injection:300T Max
Stamping:250T Max

FAQ

1. When can I get my quotation?
    We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price, please call us or tell us in your email so that we will regard your inquiry priority.

2. How can I get a sample to check your quality?
    After price confirmation, you can require samples to check our quality. If you need the samples, we will charge for the sample cost. But the sample cost can be refundable after order confirmation when your quantity of the order up to a certain amount.

3. Can I order a small quantity?
    
Of course, you can.

4. Do you provide ODM/OEM service?
    OEM / ODM is welcome, We got a professional and creative R&D team. From the concept to finished goods, we do all ( design, prototype reviewing, tooling and production ) in the factory.

5. How about the after-service of your product?
    We usually feedback within 24 hours after we get your complaint. And we can guarantee a satisfied solution to every customer.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Toy, Agricultural Machinery, Car
Hardness: Soft Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Plastic
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear

What are the benefits of using plastic gears over traditional materials?

Using plastic gears instead of traditional materials offers several benefits. Here’s a detailed explanation of the advantages of using plastic gears:

  • Weight Reduction: Plastic gears are significantly lighter in weight compared to gears made from traditional materials such as metal. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Noise and Vibration Reduction: Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment. Metal gears, on the other hand, tend to generate more noise and vibration due to their higher stiffness.
  • Self-Lubrication: Certain plastic materials used in gears have inherent lubricating properties, allowing for self-lubrication between gear teeth. This reduces friction and wear, eliminating the need for external lubrication and simplifying maintenance requirements. Metal gears, on the other hand, typically require lubrication to reduce friction and wear.
  • Corrosion Resistance: Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Cost-Effectiveness: Plastic gears are often more cost-effective compared to gears made from traditional materials. Plastic materials are generally less expensive than metals, and the manufacturing processes for plastic gears, such as injection molding, can be more efficient and economical for large-scale production.
  • Electrical Insulation: Plastic gears offer electrical insulation properties, which can be advantageous in applications where electrical isolation is required. Metal gears, on the other hand, can conduct electricity and may require additional insulation measures in certain situations.
  • Customization and Color Options: Plastic gears can be easily customized in terms of shape, size, color, and surface finish. This allows for branding, aesthetic preferences, or specific identification requirements in various applications. Metal gears, on the other hand, have more limited options for customization.

These benefits make plastic gears attractive alternatives to traditional materials in many applications. However, it’s important to consider the specific requirements and operating conditions of the application when selecting the appropriate gear material.

plastic gear

Are there specific design considerations for using plastic gears?

Yes, there are specific design considerations that need to be taken into account when using plastic gears. Here’s a detailed explanation of these considerations:

1. Material Selection: Choosing the right plastic material for the gear application is crucial. Different plastic materials have varying mechanical properties, such as strength, stiffness, and wear resistance. Consider factors such as load-bearing requirements, operating temperatures, environmental conditions, and compatibility with lubricants. It’s important to select a plastic material that can withstand the specific demands of the application.

2. Gear Geometry: The design of plastic gears should consider factors such as tooth profile, module or pitch, pressure angle, and tooth thickness. The gear geometry should be optimized to ensure proper meshing, efficient power transmission, and minimal noise and vibration. The design should also take into account the limitations and capabilities of the plastic material, such as its ability to form precise tooth profiles and maintain dimensional stability.

3. Clearances and Tolerances: Plastic gears may require different clearances and tolerances compared to metal gears. The coefficient of thermal expansion, dimensional stability, and manufacturing processes of plastic materials can affect the gear clearances. It’s important to consider the thermal expansion characteristics of the specific plastic material and provide appropriate clearances to accommodate temperature variations. Tight tolerances may result in binding or increased friction, while excessive clearances can lead to backlash and reduced gear accuracy.

4. Load Distribution: Distributing the load evenly across the gear teeth is essential for preventing premature wear and failure. Consider gear design elements such as tooth profile, tooth width, and the number of teeth to optimize load distribution. Reinforcing the gear teeth with fillets or other strengthening features can help improve load-bearing capacity and reduce stress concentrations.

5. Stiffness and Deflection: Plastic gears generally have lower stiffness compared to metal gears. The design should consider the potential for deflection or deformation under load. It may be necessary to increase the gear size, modify the tooth geometry, or incorporate additional support structures to enhance stiffness and minimize deflection. Analytical tools and simulations can be employed to assess and optimize gear design for stiffness and deflection.

6. Lubrication and Wear: Proper lubrication is important for the performance and durability of plastic gears. Consider the lubrication requirements of the specific plastic material and design features that facilitate effective lubricant distribution. Pay attention to potential wear mechanisms, such as adhesive wear or abrasive wear, and incorporate measures to minimize wear, such as optimized tooth profiles, lubricant selection, and sealing mechanisms.

7. Environmental Factors: Plastic gears may be subjected to various environmental factors such as temperature extremes, humidity, chemicals, and UV exposure. Evaluate the potential impact of these factors on the gear material and design. Select plastic materials that offer resistance to environmental degradation and consider protective measures, such as coatings or encapsulation, to enhance the gear’s resistance to environmental conditions.

8. Manufacturability: Consider the manufacturability of plastic gears during the design phase. Different plastic materials may have specific requirements or limitations for manufacturing processes such as injection molding or machining. Design features that facilitate efficient and cost-effective production, such as draft angles, parting lines, and tooling considerations, should be taken into account.

By considering these specific design considerations, such as material selection, gear geometry, clearances, load distribution, stiffness, lubrication, environmental factors, and manufacturability, it’s possible to optimize the design and performance of plastic gears for various applications.

plastic gear

What are plastic gears and how are they used?

Plastic gears are gear components made from various types of polymers or plastic materials. They offer unique properties and advantages compared to traditional metal gears. Here’s a detailed explanation of plastic gears and their applications:

  • Types of Plastic Materials: Plastic gears can be manufactured from different types of polymers, including thermoplastics such as acetal (polyoxymethylene – POM), nylon (polyamide – PA), polycarbonate (PC), and polyethylene (PE), as well as thermosetting plastics like phenolic resins. Each material has its own specific characteristics, such as strength, wear resistance, and temperature resistance, which make them suitable for different applications.
  • Advantages of Plastic Gears: Plastic gears offer several advantages over metal gears, including:
    • Lightweight: Plastic gears are lighter in weight compared to metal gears, which can be beneficial in applications where weight reduction is important.
    • Low Noise and Vibration: Plastic gears can provide quieter operation due to their inherent damping properties that reduce noise and vibration levels.
    • Corrosion Resistance: Certain plastic materials used in gear manufacturing exhibit excellent resistance to corrosion and chemicals, making them suitable for applications in corrosive environments.
    • Self-Lubrication: Some plastic materials have self-lubricating properties, reducing the need for external lubrication and simplifying maintenance.
    • Cost-Effective: Plastic gears can be more cost-effective compared to metal gears, especially in large-scale production, due to the lower material and manufacturing costs.
  • Applications of Plastic Gears: Plastic gears find applications in various industries and systems, including:
    • Automotive: Plastic gears are used in automotive systems such as windshield wipers, HVAC systems, seat adjusters, and electric power steering systems.
    • Consumer Electronics: Plastic gears are commonly found in consumer electronics like printers, scanners, cameras, and home appliances.
    • Medical Devices: Plastic gears are used in medical equipment and devices where weight reduction, low noise, and corrosion resistance are desired.
    • Toy Manufacturing: Plastic gears are extensively used in the production of toys, including mechanical toys, hobby models, and educational kits.
    • Office Equipment: Plastic gears are employed in office equipment like printers, copiers, and scanners, where quiet operation and cost-effectiveness are important.
    • Industrial Machinery: Plastic gears can be utilized in various industrial machinery applications, such as conveyor systems, packaging equipment, and textile machinery.

It’s important to note that while plastic gears offer unique advantages, they also have limitations. They may not be suitable for applications requiring extremely high torque, high temperatures, or where precise positioning is critical. The selection of plastic gears should consider the specific requirements of the application and the mechanical properties of the chosen plastic material.

China Hot selling High Quality Customized Plastic Spur Gear, Nylon Gear, POM Gear straight bevel gearChina Hot selling High Quality Customized Plastic Spur Gear, Nylon Gear, POM Gear straight bevel gear
editor by CX 2024-03-27